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Pairing together planar material slabs with opposite signs for the real parts of their constitutive parameters
has been shown to lead in the steady-state regime to interesting and unconventional properties that are not
otherwise observable for single slabs, such as resonance, anomalous tunneling, transparency, and subwave-
length imaging through the reconstruction of evanescent waves [A. Alu and N. Engheta, [EEE Trans. Antennas
Prop. 51, 2558 (2003)]. The mechanics of the phenomenon, however, and in particular how the steady-state
resonant response is reached, has not been explored. Here we analyze how a transient sinusoidal signal that
starts at r=0 interacts with such a complementary pair of finite size using a finite-difference time-domain
(FDTD) technique. Multiple reflections and transmissions at each interface are shown to build up to the
eventual steady-state response of the pair, and during this process one can observe how the “growing expo-
nential” phenomenon may actually occur inside this bilayer. As with any resonant phenomena, the time
response of this effect depends on the Q of the system, which is related to the geometrical and electrical
parameters of the bilayer. Transparency to finite beams and reconstruction of the subwavelength details of an
image are shown in the transient and steady-state response of the setup through one-dimensional and two-

dimensional FDTD simulations.
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I. INTRODUCTION

The current interest in understanding the physics behind
the anomalous properties of metamaterials is evident in the
recent physics and engineering literature. In particular, arti-
ficial materials with negative constitutive parameters, which
can be distinguished into e-negative (ENG), u-negative
(MNG) [1], and double-negative (DNG) [2] media if, respec-
tively, their effective permittivity, permeability, or both of
them have a negative real part, have been at the center of this
attention, due to the anomalous phenomena theoretically pre-
dicted for their behavior and, in part, also verified experi-
mentally. The existence and the possible artificial realization
of these materials have been studied and verified. In particu-
lar, ENG (plasmonic) media exist naturally in the infrared
and optical frequencies, e.g., noble metals below their
plasma frequency [3] and polar dielectrics [4], and they can
be relatively easily synthesized at lower frequencies by em-
bedding a regular lattice of thin metallic wires in a host me-
dium [5]. These inclusions provide the proper resonant elec-
tric polarizability in such an artificial material in the desired
frequency regime. In analogy, an MNG material, such as a
resonant ferromagnetic medium, may be synthesized by em-
bedding resonant magnetic loops in a host medium, i.e.,
split-ring resonators, thereby providing the proper magnetic
resonant polarizability in the desired frequency regime [6].
These two techniques may be employed at the same fre-
quency to obtain DNG materials within a given frequency
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range, as has been reported in [7,8]. In practice, the current
technology for manufacturing DNG materials consists of
stacking together electrically thin layers of ENG and/or
MNG materials, whose collections may be regarded as a bulk
DNG medium [1]. To be consistent with the previous termi-
nology, we will refer to common materials, which have both
positive permittivity and permeability, as double-positive
(DPS) materials.

One of the most striking properties of a planar DNG slab
is represented by the possibility that it can focus subwave-
length details, as first predicted in [9], by fostering the
“growth” (instead of the decay) of evanescent waves inside
it. Following this discovery, a multitude of papers explaining
the potential implications and possible limitations of this
anomalous phenomenon when realistic metamaterials are
considered have appeared (see, e.g., Refs. [10-15]). Related
to the aforementioned close analogy that exists between the
DNG planar slab and a planar pair of ENG and MNG layers,
it was demonstrated analytically in [1] that the “conjugate”
(i.e., complementary) pairing of infinitely extent in two di-
mensions, juxtaposed planar slabs of ENG and MNG media
(as well as DPS and DNG pairs, of which the perfect lens [9]
is a special case), may induce an anomalous resonance, com-
plete tunneling, total transparency, and reconstruction of eva-
nescent waves, even though each of the two slabs by itself is
essentially opaque to the incoming radiation.

The DNG “perfect lens” geometry has attracted a great
deal of attention because of its striking consequences associ-
ated with the evanescent growth in such a simple geometry.
Several studies have been devoted to analyzing the physics
behind this anomalous phenomenon. In contrast, the physics
and the mechanisms underlying the resonances of ENG-
MNG pairs of complementary opaque materials have not re-
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ceived as much attention and interest in the scientific com-
munity. These bilayers, however, are of strong interest for
several reasons. First, ENG and MNG materials are rela-
tively easier to manufacture separately than a bulk DNG ma-
terial. Since only one of the two effective negative constitu-
tive parameters must be realized in a given layer (not both),
only one set of inclusions needs to be included to form that
metamaterial layer. Second, the DNG itself may be regarded
as a stack of such ENG and MNG pairs, if the bilayers are
thin enough. Consequently, the physics involved with this
pairing appears important also for a thorough understanding
of DNG materials. Third, the same anomalous evanescent
wave growth associated with a DNG slab is expected also in
these bilayers. Finally, the resonances realized with such
complementary pairs or with ENG or MNG materials paired
with standard dielectrics have been proposed for several in-
novative devices, i.e., for guiding and radiating components
of new conception (see, e.g., [16,17] and references therein).
As for applications, it is worth emphasizing the possibility of
a subwavelength imaging device achieved with an ENG-
MNG bilayer as was suggested in [1], which is similar to the
DNG perfect lens concept. This behavior is verified in the
following sections.

It should be emphasized here that most of the studies on
the physics associated with the anomalous properties of
metamaterials, and in particular of DNG materials, have been
performed analytically or numerically for the time-harmonic
steady-state regime, i.e., under monochromatic excitation at
a given fixed frequency, at which the involved metamaterials
were supposed to have an ENG, MNG, or DNG response.
However, the dispersive nature of these materials, which is
well known to be necessary for energy conservation issues in
passive materials with negative constitutive parameters [ 18],
requires a certain time to establish this desired steady-state
response [19]. Moreover, due to the resonant nature of the
phenomena associated with these juxtaposed slabs and its
connection to surface plasmons, it is clear that a certain
amount of time is required to establish this behavior and it
would be inversely related to the Q factor of this resonance.
It is therefore expected that the response of these slab struc-
tures to a realistic initial excitation is not instantaneous, but
would rely on some number of multiple reflections at each
interface to establish the resonant mode.

In the following, we explore in detail the physical mecha-
nisms underlying the anomalous resonance between an ENG
and an MNG planar layer. In particular, we study how a
transient sinusoidal signal would interact with such a juxta-
posed ENG-MNG pair, showing how the multiple reflections
and transmissions at each interface can be designed to build
up to the eventual resonant steady-state response of the pair.
We will demonstrate in detail that one can observe the
“growing-exponential” phenomenon in this process as it oc-
curs inside this bilayer. Here we have simulated this time-
domain problem using the finite-difference time-domain
(FDTD) technique, assuming the Drude models for the fre-
quency dependence of the permittivity and permeability of
these slabs. This choice allowed us to incorporate dispersive
effects into the simulation model along with the possibility
of having the material properties of both of these regions
attain specified negative real parts at or approximately near
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FIG. 1. A juxtaposed pair of planar finite sized slabs that are
located in free space and are excited by a TM plane wave.

the frequency of the sinusoidal excitation. Our time-domain
results confirm the steady-state prediction of growing expo-
nential behavior in the bilayer and the total resonant trans-
mission through it. However, as anticipated, these responses
are achieved only after a certain period of time (i.e., a certain
necessary number of FDTD time steps), which allows for the
buildup of the interactions between the interfaces. Conse-
quently, this time delay is found to be, in general, a function
of the thickness of the slabs and the possible losses in each
slab. A sketch of a small portion of these results was pre-
sented in a recent symposium [20].

II. FORMULATION OF THE PROBLEM

Two classes of numerical simulations were considered
here: one dimensional (1D) and two dimensional (2D). The
1D problem represents a plane wave normally incident on a
pair of infinitely extent ENG-MNG slabs. The two slabs
have, respectively, the permittivity egyg, €yng, the perme-
ability tgng, Mung. and the thicknesses dpyg, dyng in the
direction of propagation. In both the 1D and 2D simulations,
the incident wave is turned on smoothly from a zero ampli-
tude to a unit amplitude in five cycles.

The geometry of the 2D numerical problem is depicted in
Fig. 1. Two planar slabs of transverse length / are surrounded
by the empty space (with permittivity &, and permeability
Mo) in a suitable Cartesian reference system. These two slabs
also have, respectively, the permittivities epyg, €png, the
permeabilities ugng, yng, and the thicknesses dpyg, dyng-
The excitation in the figure represents a TM (parallel polar-
ized) plane wave impinging at a specified angle 6; with re-
spect to the normal. For simplicity, the geometry is indepen-
dent of y. The actual excitation in the 2D simulations was a
TM Gaussian beam; this provided us with the means to study
the localization of the fields in the bilayer and beyond it.

When the materials have negative parameters, the consti-
tutive parameters of the two materials composing the slabs
under both the 1D and 2D analyses are assumed to follow the
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lossy Drude models for their frequency dependence [2].
Their general form for a ¢’ time dependence may be writ-
ten as
— 1- eENG ,
ano() 80[ w(w+ilpye)

ngN G :|
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menG(©) Mo{ (@ +iT,ene)

QeMNG :| (1)
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The electric and magnetic plasma frequencies w, may be
chosen so that the two materials are, respectively, an ENG
and an MNG medium at the driving radian frequency w,, at
which the sinusoidal signal is launched. The Drude models
represented by Eq. (1) satisfy the Kramers-Kronig and cau-
sality conditions, as widely discussed in the literature (see,
e.g., [18]), and also the energy conservation requirements for
passive ENG and MNG materials. Notice that these models
include the presence of losses, represented by the collision
frequency parameters I', and have a limited band of frequen-
cies in which their constitutive parameters are negative, con-
sistent with the limitations exhibited by real-life metamateri-
als. These models therefore represent valid choices for the
following analyses. Note that when the considered materials
have positive constitutive parameters with values not less
than those of free space, their permittivity and permeability
parameters are simply taken to be positive constants (i.e.,
dispersion is neglected in these cases).

In this context, we should underline that the current inter-
est in materials and metamaterials with anomalous constitu-
tive parameters has fostered also the interest of the scientific
community in the numerical problems connected with re-
gions of strong dispersion and absorption near the reso-
nances of their constitutive parameters. In particular, FDTD
modeling of metamaterials with strong dispersion has been
presented in recent contributions (see, e.g., [21-23]), justify-
ing the use of FDTD techniques in these regions. The results
of the present paper, however, do not necessarily require ex-
cessively negative values of the permittivity or permeability
to demonstrate these anomalous phenomena. The resonance
considered here indeed concerns the pairing of materials with
constitutive parameters of opposite signs. Therefore, we are
not focused on materials having strong dispersive properties,
and we can adequately demonstrate the effects with the
simple Drude models (1), which satisfy causality and
Kramers-Kronig relations [18]. We note also that for the
negative permeability, Lorentzian or two-time-derivative
Lorentzian dispersion models have also been used in the lit-
erature [6,7]. Here, however, for the sake of mathematical
simplicity and faster convergence in the numerical simula-
tions, the Drude model is used for both negative permittivity
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and permeability. This choice does not affect the general
conclusions and nature of the results reported here.

As was shown analytically in [1] for infinite transverse
width slabs, a sin(w,f) monochromatic excitation of such a
ENG-MNG pair structure would highlight its anomalous re-
sponse at the frequency w, if the two media have comple-
mentary properties. Because the slabs under consideration
here are finite in width, we expect similar behavior to occur
from this bilayer when the same choice of the geometric and
constitutive parameters is made, provided that the transverse
dimension of the pair is large enough, i.e., [>dgng,dyng-
With satisfaction of these conditions, we expect to achieve
total tunneling of the radiation through the bilayer with little
or no reflection, as well as the “growing” evanescent fields
inside this pair and the subsequent possibility of virtual im-
aging with sub-wavelength resolution.

It is interesting to note that each of the two slabs per se
would not allow propagation at the excitation frequency,
since the wave number k=w,ue would be imaginary in
either of them. Therefore, it is expected that the system
would be highly reflective if one of the two slabs was re-
moved. On the other hand, for the given TM plane wave
impinging on the pair at the angle 6, the following condi-
tions, which were derived in Ref. [1], Eq. (9), lead to the
interface resonance:

i

. SENGSMNG(SMNG/LENG - 8ENGMMNG)
60, = arcsin (2)

2 2
Hogo(EynG — EENG)

- —
/ —
VeEnGMENGAENG = N EMNGIMNGAMNG >

These conditions ensure total tunneling, zero reflection
and complete phase and amplitude restoration between the
entrance and exit faces of the bilayer, in the limit of infinitely
wide slabs (I—©0) and no losses. Similar expressions may be
derived for the other polarization by invoking duality. An
ENG-MNG pair illuminated by an incident plane wave that
is designed following the resonance conditions in Eq. (2)
will be denoted in the following discussion as a conjugate
pair (or complementary pair), in analogy with Ref. [1].

As a special case, a conjugate-matched pair will denote
the bilayers in which

dENG = dMNG~ (3)

These conditions were shown in Ref. [1] to guarantee zero-
reflection and total-transmission conditions for any TE or
TM plane wave impinging on the pair, i.e., independent of
the polarization and the angle of incidence. Moreover, when
evanescent waves impinge on such conjugate-matched pairs,
their incident amplitudes are restored as well on the back
side of the bilayer. In [1] it was therefore further speculated
that such conjugate-matched pairs may act as a virtual image
displacer with subwavelength resolution, analogous in sev-
eral ways to the perfect lens presented in [9].

EENG= ~ EMNG>  MENG = — MMNG>

III. TRANSIENT RESPONSE: FDTD SIMULATIONS

In this section we verify the analytical predictions re-
ported in [1] and briefly discussed in the previous section
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with selected numerical simulations generated with an FDTD
engine (as in [2]). A sinusoidal excitation at the frequency w,
that is smoothly turned on at t=0 is considered for both the
1D and 2D simulations. The spectrum of such an excitation
is composed of an infinite number of harmonics centered on
the frequency wy; this allows one to study the initial transient
response of the system and its convergence towards the
steady-state conditions.

A. 1D simulations

As a first example, we used the 1D simulator to study the
behavior of a bilayer that was designed to be conjugate-
matched pair at the frequency w,. The material parameters
for this case were epyg(wy)=—eync(w)==-3&0, mrng(®wy)
=—pun(@) =2p0,  deng=dun=No/10,  with  Ag
=27/ (wNegm)=1.0 cm being the wavelength at the sinu-

soidal excitation frequency f,=30 GHz. The problem space
was 10000 cells long, where Az=10 um=X\y/1000. The
source plane, a total field or scattered field boundary, was
located at z=2000Az, the bilayer began at z=5000Az, 3\,
away from the source. The thicknesses of the ENG and
MNG layers were d;=d,=100Az=X\,/10. The time step was
Ar=0.95Az/c=31.67 fs.

Figure 2 shows the electric field distribution inside and
outside the bilayer, with a zoom for the distribution inside
the conjugate-matched pair in the figure inset, at two differ-
ent, but close snapshots in time when steady state has already
been achieved. The plots clearly show the total tunneling
predicted in [1], with the same phase at the entrance and the
exit faces of the bilayer. Here and in the following figures the
amplitude of the field is relative to the value of the incident
wave in the steady-state regime, which was specified to be
1 V/m. It is evident at these time points that the growing-
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FIG. 4. (Color online) Time histories of the field values for the cases of Figs. 2 and 3 at the entrance and exit faces and at the interface
(red line for the field at the entrance face, blue line at the exit face, and green line at the interface between the layers).

exponential distribution is already present, consistent with
the fact that the wave is evanescent in each of the slabs of the
bilayer, but its amplitude and phase is the same at the en-
trance and exit faces. Notice the sinusoidal variation in time
of the exponential peak at the interface between the two lay-
ers, which is more evident in the zoom. As mentioned above,
here and in the following plots some cells in the entrance
side of the bilayer (here the first 2000 cells) are devoted to
show only the reflected (scattered) field, isolated from the
impinging excitation. As is evident, its amplitude is ex-
tremely low in this case, showing the total transmission typi-
cal of the steady-state regime for this conjugate-matched pair
configuration.

Increasing the thicknesses of the layers to dgyg=dyng
=\o/5, one finds that it takes a longer period of time to reach
the steady-state regime. A snapshot of the steady-state elec-
tric field at £=9.476 ns, a time comparable in the steady-state
regime to those given in Fig. 2, is shown in Fig. 3. Again, the
time elapsed from 7=0 is long enough for the field inside the
bilayer to experience the growing exponential, even though
the level of reflection here is higher and the transmission
amplitude is not complete.

Figure 4 shows the time history for the electric field val-
ues at the entrance (red line) and exit (blue line) faces and at
the interface (green line) between the two media for the cases
of Figs. 2 and 3. Here it is evident how the field at the
entrance face rapidly converges to unity, whereas the inter-
face field, which converges to a higher value due to the ex-
ponential growth predicted theoretically, requires a longer
time to reach the steady state, consistent with the prediction
that the multiple reflections inside the bilayer need some
time to build up and achieve a final growing-exponential
distribution inside the bilayer. This behavior is particularly
apparent in the zoom of the first nanosecond in the two fig-
ures. It is also consistent with the fact that the spectrum of
the excitation is converging towards w,, but in the transient
the bilayer is not acting as a conjugate-matched pair, since its
constitutive parameters have different responses at the differ-
ent frequency components of the excitation. With a similar
behavior, also the exit field converges slowly to unity, show-
ing the total tunneling only after a transient period. Compar-
ing the two cases of Fig. 4, it is clear how the steady-state
regime is reached more slowly when thicker slabs are con-
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b)

c)

FIG. 5. (Color online) Three different snapshots in time (a)
t=600Ar=134.3 ps, (b) t=1200Ar=268.7 ps, and (c) r=3800A¢
=850.8 ps, for a Gaussian beam with wy=2A\ incident at the angle
0;=1/9=20° on the conjugate-matched pair of Fig. 2 (lighter colors
correspond to higher values of the field).

sidered, since a larger thickness essentially corresponds to a
higher resonance Q factor.

B. 2D simulations

The conclusions of the previous section have been further
verified by considering the 2D case of a very broad Gaussian
beam that was normally incident on a bilayer, each slab hav-
ing the same depth as in the 1D examples. The distribution of
the Gaussian beam in the total field-scattered field plane was
exp(—x2/ w(z)) where wy=5\,. The time domain results were
essentially the same. There was no noticeable impact on the
rate of growth of the interface field of the finite transverse
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dimension of the slabs, and therefore these results are not
reported here.

In Fig. 5 we show the results of a Gaussian beam with
wo=2\, that is obliquely incident on the conjugate-matched
bilayer having d;=d,=\,/10. The angle of incidence of the
Gaussian beam was 6;=/9=20°; the total transverse size of
the slabs is 8\. The distribution of the electric field intensity
is shown for three different instants in time. In the first snap-
shot, the beam has just arrived on the slab, and it starts its
interaction with the bilayer. In the second snapshot, its inter-
action has started, but we are not yet in the steady-state re-
gime. Here the fields start to build up at the interface be-
tween the slabs, while a visible, non-negligible reflected
wave occurs and consequently creates an interference pattern
with the incident wave. Entering the steady-state regime
(third snapshot), however, the bilayer becomes totally trans-
parent to the radiation, the fields are sensibly higher at the
interface than in the outside region, and the reflection from
the bilayer is zero. Notice also how the phase of the plane
wave is totally restored at the exit face of the bilayer, as if
the structure were completely transparent to the plane wave
incidence.

The same behavior was also verified for a Gaussian beam
with wy=0.5\, impinging with 6,=7/9=20° on the same
conjugate-matched bilayer. These results are shown in Fig. 6
in the left column. Since we are considering here, as in Fig.
5, a conjugate-matched bilayer, which in the steady state is
transparent at every angle of incidence, we verify again in
the last snapshot, given in Fig. 6(c), that total tunneling oc-
curs through the bilayer even for this more complex and
finite in space excitation. Again, note how the phase-
restoration phenomenon is evident in the structure. In fact,
one can see that the Gaussian beam actually tunnels in phase
and amplitude through the bilayer when the steady state is
reached.

We have also considered the conjugate bilayer
case, which is designed following Eq. (2) to achieve
the anomalous total tunneling only at the specific incidence
angle 6,=m/9=20°, i.e., epvg(wy)==3ep, mrnc(wy)=2u0,
eunc(0) =280,  punc(®a)==1.31,  dgyg=dyn=No/10.
The results are reported in the right column of Fig. 6, where
it is evident how the total tunneling cannot be achieved in
this case. Even in the steady-state regime, the impinging
power is partially reflected back by the bilayer. Only a frac-
tion of the plane waves that compose the Gaussian spectrum
may tunnel through such a bilayer; and consequently a re-
flected wave remains present even after steady-state condi-
tions are reached and a beam with a smaller angular spec-
trum tunnels through the bilayer even in the steady-state
regime. The differences between the two cases are more evi-
dent in Fig. 7, where we compare the time responses that are
generated when a Gaussian beam with a waist wo=\, im-
pinges on the same two different bilayers used to generate
Fig. 6. One can see that steady state is reached later in the
conjugate-matched case than in the conjugate case, since
more plane waves have to contribute to the resonance. None-
theless, the tunneling is eventually complete (same ampli-
tude and phase at the entrance and exit faces). In the conju-
gate case, on the other hand, steady state is reached more
quickly, but the field at the exit face is lower than at the
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FIG. 6. (Color online) Three
different snapshots in time (a) ¢

3

a) d) =600Ar=134.3 ps, (b) r=1200A¢
-~ — : =268.7 ps, and (c) r=3600Ar

=" N\ = - )= \\ =806.0 ps for a Gaussian beam

< = J =3 with w=0.5, incident at the

angle 6;=m/9=20° on the

conjugate-matched pair of Fig. 2;

\

b) , e)

the same time snapshots in (d),
(e), and (f) for the incidence on a
conjugate pair with egyg(wy)=
=3e0, penc(0a) =240, eync(wy)
=2ep,  umnG(@a)==1.3u9, and

<
7
=
=
/
9 ' 4, f)

dENszMNGz)\O/ 10 (llghter col-
ors correspond to higher values of
the field).

entrance. It is interesting to emphasize, moreover, how the
fields at the interface get a higher value in the conjugate-
matched case in comparison to the conjugate one. This is
related again to the different numbers of plane waves that
may actively contribute to the resonance. In other words, the
conjugate-matched resonance indeed shows a higher Q fac-
tor, keeping fixed the thickness of the bilayer and the losses
in the materials. [We remind the reader here that, as shown in
[1], a given conjugate bilayer shows total tunneling at a
single incident angle in the steady-state, represented by Eq.
(2), but a sufficiently high transmission in a given angular
region, whose broadness depends on the thickness of the
bilayer and its other constitutive and geometrical parameters.

This explains why the contribution from a superposition of
plane waves to the resonance in the conjugate case is not
represented by a single plane wave, but by a specific set of
them. ]

C. Virtual subwavelength imaging

In Fig. 8 we have tested the possibility of employing the
bilayer as a virtual image displacer, as proposed in [1]. We
have considered a line source on one side of the bilayer, a
distance d=20Az=N\y/5 from it. It is clear from Fig. 8 that,
after the time needed to reach a steady state, the phase and
amplitude restoration at the exit side is complete, allowing

FIG. 7. (Color online) Time
response for the same Gaussian
beam (wy=\q) impinging on a
conjugate bilayer and on a
conjugate-matched one (red line
for the field at the entrance face,

i ! iy blue line at the exit face, and
green line at the interface between

20 F 20 f
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= 1.0 5 s Lo :
S osf L
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B 00F 'E" _E 0.0 :
S -0sE 4 © -05 F
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FIG. 8. (Color online) Three different snapshots in time (a)
t=600Ar=134.3 ps, (b) r=1000Ar=223.9 ns, and (c) +=1900A¢
=425.4 ps, for the employment of the conjugate-matched pair of
Fig. 2 as a near-field virtual image displacer (lighter colors corre-
spond to higher values of the field).

for an observer placed on the exit side of the bilayer to
“view” the line current as if it were closer than it actually is.
Also the reflection on the source side is minimal once steady
state is reached.

FIG. 9. (Color online) Snapshot in time for the electric field
intensity at t=4850Ar=1.715 ns (in the steady-state regime) for two
electric current line sources separated by 40Az=\q/5 located
0.01\( away from the bilayer of Fig. 8 (lighter colors correspond to
higher values of the field).

As a final example, in Fig. 9 we have reported the steady-
state regime electric field distribution for the same virtual
displacer as in Fig. 8 when two sources with subwavelength
spacing are placed close to the entrance side. The spacing
between the sources is equal to 40Az=\y/5. You notice the
expected large growth of the field at the ENG-MNG inter-
face in the plot and how a blurry, but noticeable, resolution
of the sources at the back face is clearly visible. In the figure,
the vertical lines correspond to the position of the two
sources and the horizontal lines delimit the ENG and MNG
layers.

IV. CONCLUSIONS

In this contribution, using the FDTD technique we have
analyzed thoroughly in the time domain the anomalous reso-
nant phenomenon arising when pairing together material
slabs with opposite signs for the real parts of their constitu-
tive parameters. Complete tunneling, total transparency, re-
construction of evanescent waves, and subwavelength virtual
imaging have been demonstrated numerically to occur after a
reasonable time delay, even though each of the two slabs by
itself would be essentially opaque to the incoming radiation.
The effect works well even with transversally finite slabs and
excitations, potentially leading to interesting applications
for imaging tools. Physical insights and dependence of the
time response to some of the parameters involved have been
discussed.
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